
(The 2020 Edition)

Rethinking
Firefox I/O

20.08.25 Firefox Performance Engineering

Keefer Rourke
[:krourke]



Firefox is huge and 
complicated.

A modern browser is a heck of a lot like an operation system.



Let’s change the way 
we do File I/O.



File I/O in 
Firefox:
A history

1996. NetScape Portable Runtime (C)
Cross-platform I/O library written in C. Provides abstractions for 
differences in platform calls and structures on Windows and Unixes

2002. XPCOM nsIFile (C++/XPIDL)
Built on top of NSPR, provides object-oriented interfaces for blocking 
file I/O. Exposed to privileged JavaScript via XPIDL.

2010. OS.File (JavaScript/C++)
What we use now. Implemented mostly using JavaScript service 
workers. Provides asynchronous/off-main-thread file I/O functionality.

2020. IOUtils (C++/Web IDL)
What we’ll use going forward. Implemented entirely in C, and 
exposed to Firefox chrome code via Web IDL.



Going forward

Need to do anything with files?

We’re using IOUtils from now on!



How did we get here?



7



8

~1500
Lines of C

~7250
Lines of JavaScript

16
Files (and 2 implementations)

Some important numbers Excluding OS.Path* and tests)

OS.File’s Implementation

Firefox Confidential



9

Before I started to port OS.File to C, I did a 
pretty thorough analysis of how it’s used.

The demand for a new API largely consisted 
of a namespace for static methods.

OS.File common usage
read

writeAtomic

stat

move

copy

remove

touch

...



10

● Dead easy to use!
● Safe, correct, and consistent across platforms!
● No surprises!
● Support idiomatic JavaScript
● Use a simple implementation built around native promises

Goals for the API



11

Why Yet Another File API?

● The OS.File API is just fine, but the JS implementation has problems
● An opportunity to prune the unused parts of the OS.File interface
● A C implementation means

○ Less code
○ More memory savings 
○ Less disk I/O
○ A faster Firefox :)



IOUtils

● Provides a non-blocking API to 
privileged (ChromeOnly) JavaScript

● Uses background thread I/O
● Works on all supported platforms
● Has only one implementation

~1000
Lines of C

0
Lines of JavaScript

3
Files



Performance
Do less work, and spend less time waiting around.



Doing 
extra I/O 
sucks

Most file I/O in the Firefox front-end is done via 
OS.File

● OS.File is implemented in JS

● JS modules are files on disk

So to do any I/O operation with OS.File

● A C process has to read the JS module

● SpiderMonkey has to interpret it

● It has to be kept in memory

● All this has to happen for every process



Project Fission 
will create a lot 
more processes

● Reducing work during 
process creation is super 
important

● IOUtils is native code that 
comes for free with every 
process! 😁



16

Waiting for I/O sucks
● When a thread requests disk I/O, the thread is stuck waiting for results
● Most mobile and desktop apps manage the GUI on the main-thread

○ Including Firefox :)
● I/O bound operations can make apps feel super slow

⏱ = suspended/blocked thread



17



What’s next?



19

● Consider a blocking version of the API for Rust consumers (bug)

● Consider adding streaming support

○ This could use the W3C streams API

● Stop using OS.File!

Future work

https://bugzilla.mozilla.org/show_bug.cgi?id=1231711#c19
https://www.w3.org/TR/streams-api/


20

Barret [:barret]
Mentor

Gijs [:Gijs]
Reviewer

Olli [:smaug]
Reviewer

Couldn’t have got this far without you :)

Kudos to these folks

Kim [:kmoir]
Manager



21

Thanks for helping me with random bugs, giving me great advice, and otherwise making this 
summer great!

Some more shout outs

Firefox Confidential

Emma [:emalysz] Nika [:nika] Nathan [:froydnj]

The University Team

Botond [:botond]

Anny [:annygakh]

Benjamin [:b4hand]

The Perf Team Summer 2020 Interns

And a big round of applause to these great teams of people :)

David [:Yoric]



Presentation Name — Section Title

Questions?


